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PREFACE 

This work was performed for the Joint Theater Air and Missile Defense Organi-
zation (JTAMDO) under the task “Analyses of Integrated Air and Missile Defense Battle 
Manager Tasks and Task Loadings in Support of Joint Theater Air and Missile Defense 
Operational Requirements and Architectures and Demonstrations.” Technical cognizance 
for this task is assigned to CDR David Weller (JTAMDO). The Institute for Defense 
Analyses (IDA) point of contact (POC) is Dr. Kent Haspert. 
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EXECUTIVE SUMMARY 

This report summarizes the literature reviewed in preparation for planning and 
executing a series of controlled, operator-in-the-loop (OITL) experiments to determine 
how an air and missile defense (AMD) battle manager’s performance degrades with 
increased workload and how automated battle management aids (ABMA) can moderate 
this degradation. The sources for this survey range from studies that describe the basic 
limits of human memory capacity to those that assess the number of battle managers 
needed to operate a partially automated missile defense system. 

The research indicates that without the assistance of automation, a battle man-
ager’s performance will degrade as the complexity of the task increases, in particular 
when he is tasked with attending to more than seven entities or decisions. Battle man-
agers’ performance may, however, vary considerably across experience levels and tasks. 
Prominent factors that affect the overall human-system performance include the battle 
manager’s cognitive capacity and the system’s level of automation. 

This report outlines four different stages and eight different levels at which auto-
mation can enhance system and human performance. An abundance of research indicates 
that while automation may decrease operator workload, it may also decrease operator 
activity, engagement, and attention, which could lead to a decrease in situational aware-
ness and performance. There is no shortage of research showing how overreliance on 
automation results in fatal accidents when the automated system fails. 
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THE EFFECTS OF AUTOMATION ON  
BATTLE MANAGER WORKLOAD AND PERFORMANCE 

“People are flexible but inconsistent … machines are consistent but inflexible” 

(Army Research Laboratory, 2005) 

A. INTRODUCTION 

As the U.S. air and missile defense (AMD) communities work toward a joint 
integrated AMD solution that includes a single integrated air picture (SIAP), integrated 
fire control, and automated battle management aids (ABMAs), the complexity of the 
system and time-sensitive threat environment will increase the cognitive demands placed 
on human battle managers. The future integrated environment will require cooperation 
among multiple Services and platforms (e.g., Patriot, Aegis, Theater High Altitude Area 
Defense (THAAD), fighter aircraft, Joint Land Attack Cruise Missile Defense (LACMD) 
Elevated Netted Sensor System (JLENS), Airborne Warning and Control System 
(AWACS), E-2)) to counter enemy air threats while ensuring the safe operation of 
friendly aircraft. As the number, variety, and capabilities of air and missile defense plat-
forms increase, the ABMA’s role in assisting the joint forces battle manager in tactical 
decision-making will become increasingly important. An ABMA that assists the battle 
manager by executing the best possible set of decision-making tasks at just the right time 
and to the most appropriate extent will optimize the overall human-system performance. 
To this end, the Institute for Defense Analyses (IDA) has been tasked to support the Joint 
Theater Air and Missile Defense Organization (JTAMDO) in determining the require-
ments for an ABMA. More specifically, IDA has agreed to design, plan, and execute a 
series of controlled, operator-in-the-loop (OITL) experiments to determine how an AMD 
battle manager’s performance degrades with increased workload in the context of various 
realistic scenarios and how an ABMA can mitigate this degradation. This report summa-
rizes the literature reviewed in preparation for planning and executing these OITL 
experiments. The insights from this literature survey and the planned experiments could 
be used to guide the development of a prototype ABMA. This prototype could then be 
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deployed and studied in a realistic environment, such as the Virtual Warfare Center 
(VWC),1 for verification and validation. 

The objective of this literature review was to ensure that this research is novel and 
has not already been fully investigated, to validate the need to perform the planned 
experiments, and to gain insight into factors that may be important to consider while 
planning the OITL experiments and analyses. The OITL experiments will be designed to 
test the performance of battle managers under different workload constraints. These con-
straints will be simulated by increasing or decreasing the complexity of the experiment 
scenarios. The experimental design will also include conditions that alter the level of 
ABMA decision-support for each scenario (an example is outlined in Section C of this 
paper). The experimental participants are expected to be AMD battle managers who are 
responsible for managing (but not operating) theater missile batteries and groups of 
aircraft. 

During the planned OITL experiments, AMD battle managers will be asked to 
make decisions in the context of realistic, simulated, theater-based threat scenarios. The 
level of difficulty and the level of decision support that the ABMA provides for each 
scenario will vary. The battle manager’s performance will be assessed by measuring his 
ability to maintain situational awareness and make appropriate, effective, and timely bat-
tle management decisions. The decision process can be broken down into five steps, 
which are required to address a given threat scenario at a particular time: (1) identify the 
targets for sensor-shooter pairing, (2) establish the priority order for making pairing deci-
sions, (3) determine sensor-shooter pairings, (4) assess which pairings meet the accept-
ability criteria, and (5) provide an ordered list of recommended pairings. The ABMA can 
take over any combination of these five steps; however, in all cases, the human battle 
manager must make the final sensor-shooter engagement decision. 

This survey reviewed over 50 sources, primarily articles, books, and technical 
reports, related to the effects of automation on battle manager workload and performance 
in AMD-related domains. The sources range from those that describe the basic limits of 
human memory capacity to those that assess the number of battle managers needed to 
operate a partially automated missile defense system. They include studies within the 
AMD domain and across other similar domains, such as air traffic control. Because the 

                                                 
1 The Boeing VWC is a multioperator, realistic, human-in-the-loop air and missile defense test bed. A 

typical VWC setup includes manned fighter aircraft, manned airborne sensors and surface-shooter 
platforms, and a sizable enemy raid consisting of a mix of missiles and manned aircraft. 
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term battle manager is specific to AMD-related domains, it will be used throughout this 
report to refer exclusively to an air and/or missile defense battle manager. Otherwise, the 
more generic and familiar term “operator” is used. Both terms refer to the human who is 
controlling or managing the system under discussion. 

The following key questions were used to guide this review of the research and to 
organize the findings in this paper: 

1. Without automation assistance, how many decisions can an operator handle 
per unit time? At what point does operator performance drop off, and does it 
drop off gradually or abruptly? 

2. Under what circumstances will automation improve operator performance 
and optimize operator workload? 

3. Under what circumstances might automation decrease operator performance 
and situational awareness while still optimizing operator workload? 

None of the sources surveyed has fully investigated these questions in an AMD 
environment; however, many of the studies contain important implications for the 
planned OITL experiments. The next three sections summarize the literature that 
addresses each of the three questions. Section E summarizes some of the key historical 
findings. 

B. OPERATOR PERFORMANCE WITHOUT AUTOMATION ASSISTANCE 

This section reviews literature related to Question 1: 

Without automation assistance, how many decisions can an operator han-
dle per unit time? At what point does operator performance drop off, and 
does it drop off gradually or abruptly? 

The number of decisions that a battle manager can handle is largely determined 
by his workload. This section introduces and defines the concept of operator workload 
and then discusses the impact of task complexity and battle managers’ behavioral factors 
on operator workload. 

1. Understanding Battle Manager Workload 

Operator workload (or simply “workload”) is a human factor that describes the 
cognitive effort involved in performing a task. Understanding workload means under-
standing at what point, how, and to what degree the demands of the task or situation 
exceed the operator’s available cognitive resources. Workload varies across operators 
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and tasks. This variation stems from the number and complexity of the task(s), the ability, 
experience, and behavior of the operator, and the operational techniques, tactics, and pro-
cedures that are available and applicable. While consideration of these factors may seem 
straightforward, the interaction among them may produce nonlinear combinations of 
complex situations that result in uncertain outcomes. As such, similarly trained and 
experienced operators may respond differently to the same situations (Hilburn, 2004). 

In the air traffic control domain, operator workload has traditionally been meas-
ured using subjective assessment instruments such as the National Aeronautics and Space 
Administration (NASA) Task Load Index (TLX) (Hart & Staveland, 1988), the Subjec-
tive Workload Assessment Technique (SWAT) (Reid & Nygren, 1988), and the Work-
load Profile (Tsang & Velazquez, 1996). Rubio, Díaz, Martín, & Puente (2004) compare 
these three subjective assessment instruments, all of which involve asking the operator to 
self-assess his workload by considering factors such as stress level, effort, and mental 
demand. 

In analyzing the data from our planned OITL experiments, we will take a differ-
ent approach. We will calculate workload objectively as a combination of contributions 
not only from subjective workload meas-
urement instruments, but also from objec-
tive performance metrics and task 
complexity. In particular, workload will be 
measured post-hoc by computationally 
estimating the quantity and complexity of 
decisions that the AMD battle manager has actually made for a given scenario (at a par-
ticular time, t). It can only be calculated after the battle manager has completed the task 
(up to time t). 

Table 1 shows all the factors that will be considered and their corresponding 
assessment metrics. The human factors are listed in the top half of the table, while the 
task-based factors are listed in the lower half of the table. Task-based factors are largely 
derived from the complexity of the scenario. Task complexity (described in the next sec-
tion) will be calculated by considering the Inherent Task Complexity and the Actual Task 
Complexity (the last two rows of Table 1). The Inherent Task Complexity is derived from 
the scenario (see Section B.2 for the theoretical foundation and examples of this con-
cept). It is strictly a task-related factor—independent of operator performance—that  
 

The workload analysis for the planned 
OITL experiments will consider not 
only subjective workload measure-
ment instruments, but also objective 
performance metrics and task 
complexity. 
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Table 1. The metrics that will be used to quantify human and task-based  
factors that contribute to workload 

Factor Metric 

Experience Demographic questionnaire 

Stress level NASA TLX 
SWAT Assessment 
Observer reports 

Confidence Logged performance data 
SWAT Assessment 

Attention Observer reports 
SWAT Assessment 

Individual differences Strategies and skills applied during the scenario and gath-
ered from logged performance data, observer reports, and 
After Action Reviews (AARs) 

Demographic questionnaire 

H
um

an
 F

ac
to

rs
 

Performance Logged performance data 
# of shots fired/missiles launched 
# of hits/# of misses, # of leakers, # of impacts 
Effectiveness 
Speed 
Efficiency 
Commonality 

Scenario:  
Inherent Task Complexity 

Raid size 
Blue force laydown 
Red force laydown 
Routing 
Defended assets 
Timing 
Order of events 

Ta
sk

-b
as

ed
 F

ac
to

rs
 

Actual Task Complexity A measure of the Inherent Task Complexity reduced by the 
number and complexity of the tasks performed by the 
ABMA 

describes the complexity of the scenario at any given time. It accounts for the number of 
decisions involved in the scenario and the difficulty (or complexity) of each decision. 
Both static and dynamic scenario-based elements contribute to the inherent task com-
plexity in AMD. The ordering of scenario events also affects the inherent task complexity 
(Leonard Adelman, Bresnick, Christian, Gualtieri, & Minionis, 1997). 

The metrics, shown on the right-hand side of the table, include both standard 
assessment instruments (described earlier in this section) and variables that would typi-
cally be computed and logged in an AMD simulation. For example, variables that affect 
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the Inherent and the Actual Task Complexity include the raid size, blue force laydown, 
routing, defended assets, and timing. None of these variables change across operators. 

The Actual Task Complexity is the Inherent Task Complexity reduced by the 
number and complexity of the tasks performed by the ABMA. If no ABMA is present, 
the Actual and Inherent Task Complexity values are the same. 

By combining the human and task-based factors in Table 1, estimates of workload 
can be calculated per unit time, accounting for changes in task complexity and other fac-
tors that change across a scenario. This notion of workload accounts for the decision den-
sity (after-action recounting of the number of decisions the operator made per unit time) 
and the degree of difficulty of each decision for each operator. The next four sections 
(B.2–B.5) explain why the literature suggests that different operators will experience 
different workloads for the same scenario and how factors such as the operators’ level of 
experience, stress, confidence, and other human factors will influence their performance. 

2. Task Complexity 

In general, an operator’s performance is expected to degrade as the complexity of 
the task increases. Task complexity is not the same as air traffic density (in air traffic 
control) or air raid density (in missile defense). Through the late 1960s and 1970s, 
research suggested that air traffic density and radio communications were the main con-
tributors to air traffic controllers’ workload 
(Hurst & Rose, 1978; Mogford, Murphy, & 
Guttman, 1994). Although these factors do 
contribute to workload, Mogford et al. 
(1994) showed that factors such as the rela-
tive frequency of complex as opposed to direct aircraft routings and the need for 
arrival/departure sequencing and spacing may be more significant.2 Other similar studies 
suggest that factors such as the mixture of aircraft types, the climbing and descending of 
aircraft flight paths (Histon & Hansman, 2002; Mogford, Guttman, Morrow, & 
Kopardekar, 1995), and the degree to which the structure of the airspace dynamically 
changes (Cummings & Tsonis, 2006) also contribute significantly to task complexity. 

                                                 
2 This study involved administering a sequence of questionnaires to over 50 air traffic controllers at the 

Federal Aviation Administration’s Jacksonville Air Route Traffic Control Center. 

A battle manager’s performance is 
expected to degrade as the com-
plexity of the task increases. Com-
plexity factors include the timing, the 
quantity and order of events, and the 
degree of uncertainty. 
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Hilburn’s (2004) study includes a meta-review and analysis of 25 other studies that 
identify factors that contribute to task complexity in air traffic control. 

Figure 1 illustrates how the complexity of the situation may vary independently 
from traffic density (Hilburn, 2004). Just three aircraft have changed their orientations 
from the figure on the left-hand side to the one on the right-hand side. The air traffic den-
sity is unchanged, yet the complexity of the situation has increased dramatically. 

 

Figure 1. The complexity of the battlespace varies independently  
from the air traffic density (Hilburn, 2004) 

The timing and order in which events occur also affect the complexity of the task. 
The speed at which events occur in the scenario affects the number of tasks the operator 
must attend to over a bounded period of time (Cannon-Bowers & Salas, 1998). Events 
containing uncertain information further increase the complexity. In the Adelman, Bres-
nick, Christian, Gualtieri, & Minionis (1997) study, 43 Patriot air defense operators were 
asked to identify simulated incoming aircraft as friendly or hostile and then engage those 
that were determined to be hostile. As aircraft entered the airspace that contained pro-
tected assets, the participants were given sequences of conflicting information regarding 
the interpretation of the aircraft in question (e.g., the aircraft responded as a Friendly to 
an Interrogation-Friend-Foe inquiry and then jammed the Patriot’s radar). When the 
information in these sequences was reordered slightly, the operators’ judgments about the 
unknown aircraft changed significantly. This example shows how changing the order in 
which information is presented can affect the complexity of the task. 

Task complexity can be mediated by the fidelity and the design of the operator 
display. The display is composed of static and dynamic environmental constituents, each 
of which contributes to the overall complexity. Static elements include geographic vari-
ables such as terrain, land and sea boundaries, situated sensors, and other assets that do 
not change. Dynamic elements include moving aircraft, missiles, and weather conditions 
(if they change during the time period under consideration). The depiction of the static 
and dynamic elements on the interface can also affect the complexity of the task. For 
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example, the interface may affect an operator’s ability to communicate and issue critical 
commands, to locate “hot spots” (locations where critical events often occur), to manage 
potential conflicts, and to visualize groups of aircraft or other entities as generalized rep-
resentations that can more easily be managed (Histon & Hansman, 2002). 

McDermott, Klein, Thordsen, Ransom, & Paley (2000) provide an illustrative 
example of how battle manager display features can be modified according to the com-
plexity of various tasks. They conducted cognitive task analysis interviews with Airborne 
Laser (ABL) program managers (PMs), an ABL subject matter expert (SME), and several 
crew members who had participated in the Joint Expeditionary Force Exercise 1999 
(JEFX-99). From these interviews, the researchers developed a sorted list of tasks, deci-
sions, and functions involved in ABL missions. The relative time to complete each task 
and the relative workload each task imposed on the ABL battle manager were also esti-
mated. Each task was also assigned a rating (high, medium, or low) to indicate how cog-
nitively challenging it was. In our terms, this rating represents the inherent task 
complexity. For some of the more cognitively complex tasks, McDermott et al. provided 
interface modification recommendations that were observed to alleviate the ABL battle 
manager’s workload. These recommendations included options such as enabling the bat-
tle manager to toggle track numbers on or off, to put their own designators on tracks, and 
to calculate the range between objects. Table 2 includes a sampling of recommendations 
relevant to AMD and the battle management function that they were intended to address 
in the ABL domain. 

Later in this paper, Sections C and D explain how the level of automation, or in 
our case, the ABMA, acts as another factor that can mediate the complexity of the task 
and possibly reduce the operator’s perceived workload. The ABMA is not likely to affect 
operator performance in a linear fashion. The degree to which the ABMA will affect a 
battle manager’s performance will depend on other factors, such as his domain experi-
ence and his ability to adapt to the ABMA. For example, the utility of the ABMA will 
likely increase as the inherent task complexity increases. As the scenario becomes more 
complex, the operator will eventually become overloaded and will need to rely on the 
ABMA. However, as the operator begins to rely more on the ABMA, he may perceive 
that the complexity and difficulty of the task decreases, perhaps significantly. The 
operator may gradually begin to play a monitoring role rather than that of an active con-
troller role. This means that the task complexity, as it is perceived by the operator,  
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Table 2. A sampling of human-computer interface recommendations designed to alleviate 
ABL battle management workload (from McDermott et al., 2000) 

Display Concept Recommendation 
ABL Battle Management Function 

Addressed 

Include designators for tracks Monitor enemy tracks 

Include range rings for surface-to-air missile 
sites 

Gauge threat to ABL 

Enable operators to differentiate between track 
types (e.g. surface, air, ground) and toggle 
track numbers on or off 

Filter and sort information 

Allow operators to put their own designators 
on tracks 

Detect problems and inconsistencies in track 
data 

Make high-value assets salient on the display Monitor location of high-value assets 

Create an automated Air Tasking Order (ATO) 
that battle managers can access from their 
displays 

Reassign tasks/orchestrate priorities 

Record information about missile launches  
(e.g., launch time and location, track number, 
actions taken, results) 

Determine trends of launch locations 

Use the information about past missile 
launches to predict and prepare for future 
launches 

Anticipate future launches 

Enable the battle manager to calculate the 
distance between objects 

Recommend changes in orbit or speed 

Display messages to inform the operator why 
the system cannot execute an instruction (e.g., 
system cannot fire because of inability to 
acquire target) 

Know weapon status and if weapon is ready 
to fire 

Show two correlated displays from the same 
perspective 

Deconflict missiles from different locations 

Sound an audio alarm and dim all other tracks 
when a missile is launched so that the new 
threat is easily detected 

Detect and recognize launch 

Allow the battle manager to zoom in and out to 
get a better picture 

Report results 

varies with the level of automation set by the ABMA. From an analytical perspective, 
this renders the task complexity inappropriate as an independent variable. Section D 
addresses this in more detail. 
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3. Battle Manager Cognitive and Behavioral Factors 

Task complexity is just one factor that contributes to an operator’s workload. The 
operator’s performance will also depend on his experience and cognitive ability 
(Mogford et al., 1995). As early as 1955, experimental evidence revealed that the amount 
of information a person can cognitively process at once does not increase linearly with 
the amount of information presented to him (G. Miller, 1955). A well-known limit to 
memory capacity is present in all domains (about 7 items), and this limit applies even 
across fundamentally different stimuli. This short-term memory capacity limitation 
manifests itself in a variety of tasks and materials, but, most typically, it is measured by 
memory span tasks. In these tasks, subjects are presented several unrelated items at a 
standard rate and asked to recall them in order. Memory span is defined as the maximum 
number of items that can be recalled correctly. 

As originally conceived, short-term memory capacity is a fundamental human 
capability that underlies a variety of cognitive tasks. In reality, performance on memory 
span tasks correlates with performance on similar rote memory tasks, but it does not nec-
essarily relate to performance on more complex tasks that would seem to depend on 
short-term memory, such as reading comprehension. 

Almost 20 years after the introduction of Miller’s concept of short-term memory 
capacity, Baddeley & Hitch (1974) introduced the notion of working memory (WM). The 
WM concept viewed short-term memory capacity as the result of a dynamic executive 
that controls temporary storage, rehearsal, and attention processes. In a simplistic sense, 
the WM concept is more inclusive than short-term memory because it accounts not only 
for short-term storage, but also for all the processes that control it. 

As the WM concept matured, researchers began to develop ways to measure it. 
The breakthrough was the realization that if WM includes the process for allocating 
attention, a WM test must require the performer to cope with multiple memory demands. 
Thus, WM is measured using the “dual-task” paradigm wherein a person is asked to do 
two or more qualitatively different tasks simultaneously. These dual tasks take on a vari-
ety of forms, but the task described by Engle (2002) is representative: 

… Subjects read aloud a series of operation-word strings such as ‘Is 4/2 + 
3 = 6? (yes or no) DOG.’ They respond as to whether or not the equation 
is correct then read the capitalized word aloud. After a set of two to seven 
such operation-word strings, we measure the number of words recalled … 
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In contrast to memory span performance, WM task performance correlates with a 
wide range of higher order cognitive tasks, such as reading and listening comprehension, 
the ability to follow directions, note taking, reasoning, bridge playing, and even writing 
computer programs. Engle speculates that WM performance, especially WM with a sim-
ple storage capacity statistically controlled, corresponds to the fluid intelligence con-
struct. Fluid intelligence is the ability to draw inferences and relationships in new 
problems, independent of acquired knowledge. 

The WM concept complicates the answers to JTAMDO questions, such as “how 
many unassisted decisions per unit time?” Engle (2002) discussed how the concept of 
WM changes our notions of short-term memory capacity, which 

… often conjures up images of a limited number of items or chunks that 
can be stored (e.g., 7 ± 2). However, my sense is that WM capacity is not 
about individual differences in how many items can be stored per se but 
about differences in the ability to control attention to maintain information 
in an active, quickly retrievable state … (p. 20). 

On the other hand, compared to the traditional static concept of short-term mem-
ory, the concept of WM seems more relevant to performance on command and control 
(C2) tasks, particularly the time-sharing demands of such activities. For example, Adel-
man, Miller, and Yeo (2004) showed how an operator’s WM capacity can directly affect 
his performance in air defense tasks. Their task involved determining the threat level of 
air-breathing targets that enter a set of concentric rings on a radar display and making 
engagement decisions for those targets. Participants were given the airspeed, course, and 
range information for each target, and, in 
some experimental cases, they received 
additional altitude and radar information. 
The rate at which targets appeared was also manipulated to vary the time pressure across 
experimental conditions. Before performing the task, the participants completed a WM 
capacity test in which they viewed numbers that flashed in sequence on a monitor and 
determined whether each number was the same as the one that flashed one, two, or three 
numbers earlier in the sequence. Adelman et al. (2004) found that performance on this 
WM task correlated positively with participants’ decision accuracy on the air defense 
task. The largest effect occurred in those situations in which participants were asked to 
consider the maximum quantity of information (including the additional altitude and 
radar information) to make a decision. 

An operator’s WM capacity can 
directly affect his performance in air 
defense tasks. 
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If human memory capacity is limited, as the psychological and air defense 
research suggests, we should expect the performance of an AMD battle manager to 
decline rapidly when he is overloaded with more than seven entities or decisions. For 
example, if the level of automation (i.e., ABMA) is held constant or turned off and the 
complexity of the scenario (e.g., number of threats per unit time) is gradually increased, 
the operator’s effectiveness and efficiency should begin to decrease at some point in time 
(see Figure 2). 

Op
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Task Complexity or Operator Workload

variation due to 
cognitive capacity

 

Figure 2. As the battle manager becomes overloaded, his performance will decrease. The 
point in time and rate of decrease will depend on his WM capacity 

A person’s experience in a domain can also change his cognitive and mental 
capacity with respect to that domain. Chess is one of the complex cognitive domains that 
has been studied in great depth to assess the degree to which experience affects mental 
capacity. Simon (1974) describes the performance of novices and grandmasters who were 
asked to reproduce chess board configurations after they were given 5 to 10 seconds to 
study them: 

If the pieces represent a position from an actual game (unknown to the 
subjects), then grandmasters and masters will generally reproduce the 
position (about 20 to 25 pieces) almost without error, while ordinary play-
ers will generally be able to place only a half dozen pieces correctly. If the 
same number of pieces is placed on the board in a random pattern, grand-
masters and ordinary players alike will be able to place only a half-dozen 
pieces correctly (p. 487). 

This effect has been replicated in other, more complex domains such as physics 
(Larkin, McDermott, Simon, & Simon, 1980), electronics troubleshooting (Gott & 
Lesgold, 2000), and air traffic control (Mogford et. al, 1995). It can be explained in part 
by chunking: mentally recoding items into aggregates that can more easily be recalled 
and cognitively processed. Extensive practice in a domain (Newell & Rosenbloom, 1981) 
is likely to result in highly efficient methods for chunking and applying mnemonics and 
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other domain-specific memory recoding schemes, thus enabling a person to become 
highly efficient in recognizing and remembering domain-specific elements, procedures, 
or situations. Over the past 30 years, the cognitive science community has learned that 
the development of expertise involves much more than improved access to items in 
memory. It renders significant changes in performance and process. Experts recognize 
recurring patterns and act on compiled combinations of principles and procedures rather 
than serially and systematically considering and processing individual pieces of informa-
tion (Anderson, 1982; Larkin et al., 1980). They follow cognitive procedures that they 
have automated through knowledge and practice and become efficient in restructuring 
their own knowledge to select and evaluate alternatives when necessary (Gott & Lesgold, 
2000). 

In our case, the degree of error across a pool of operators who have different 
characteristics is likely to vary significantly based on backgrounds and experience. It will 
depend on the quantity, complexity, and context of the decisions that the operator makes 
at each point in time during a given scenario. It can be calculated per unit time to account 
for changes in the varying complexity of the task and other factors that change across a 
scenario. Figure 3 shows how these factors might be considered for characteristic groups 
of operators (e.g., novice, intermediate, expert). The most experienced operators might 
have performance curves in the yellow area, indicating that they are able to handle a 
more difficult, complex scenario without as much performance degradation. The point 
and the rate of performance degradation (slope of the line) are unlikely to converge 
across diverse communities of operators. These factors will be influenced by the opera-
tor’s personal characteristics, including his mental capacity, experience, and confidence. 
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Figure 3. Without automation, operator performance is a function of workload, memory 
capacity, experience, and other operator-specific characteristics 
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Different operators will experience 
different workloads at different times 
for the same scenario. 

The term “workload” is context specific and describes the after-action recounting 
of the number of decisions the operator made per unit time combined with the 
subjectively weighted degree of difficulty 
of each decision. Different operators will 
experience different workloads at different 
times for the same scenario. Factors such as the operators’ level of experience, stress, 
confidence, mental capacity, and other human factors will influence their workload, 
which, in turn, will influence their performance. 

4. Decision-Making Under Uncertainty in Stressful, High-Risk Situations 

A battle manager’s decision-making behavior is affected by the way he handles 
uncertainty in stressful, high-risk situations. Because decision-making in an AMD envi-
ronment involves a high degree of risk, it is worthwhile to consider how a battle man-
ager’s decision process might change when he is presented with risky situations 
involving uncertain information. Research on human decision-making (Kahneman & 
Tversky, 1979) has shown that the way people perceive risk and exhibit risk-seeking or 
risk-aversion behavior cannot be explained in a computationally logical way by expected 
utility theory. Kahneman & Tversky (1979) developed Prospect theory to explain human 
decision-making behaviors in the presence of risk. The theory’s underlying concept is 
that people base their judgments on perceived increases or decreases in value caused by 
gains or losses (with respect to some reference point), with less regard for the final out-
come. The theory also states that as a person accumulates losses without adapting his 
reference point, his tendency toward risk-taking behavior increases (which explains the 
tendency of some gamblers to increase their betting during a losing streak). This research 
may be important to consider if the human battle manager, who may be applying Pros-
pect theory to make decisions, misunderstands the ABMA’s activities because it is 
applying a logical utility-based theory to make decisions on behalf of the battle manager. 

According to Prospect theory, when people are presented with the possibility of 
winning, they tend to select choices that minimize risk and maximize certainty, even 
when the risk is insignificant. The one exception seems to be situations in which all the 
choices present similar gains and losses and “winning is possible, but not probable” 
(p. 267). A good example of this situation is the $5 lottery ticket for which there is a very 
small chance of winning a large sum of money. In that case, people tend to select the 
choice that offers the greatest possible gains and accept the small possible loss. On the 
other hand, when people are presented with the possibility of losing (instead of winning), 
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they exhibit risk-seeking behavior that attempts to minimize loss, at the risk of losing 
even more. 

The way that a decision-making problem is presented can significantly affect the 
resulting decision. For example, a problem in which the decision-maker is given $1,000 
and asked if he would like an additional $500 (the risk-averse decision) or a 50% chance 
to win another $1,000 (the risk-seeking decision) can also be presented as one in which 
he is given $2,000 and asked if he would like to give back $500 (the risk-averse decision) 
or risk a 50% possibility of losing $1,000 (the risk-seeking decision). In the first case, the 
decision-maker is likely to make the risk-averse decision. In the second case, he is likely 
to take the risk-seeking choice. When problems are broken down into subproblems that 
are presented sequentially, each requiring an independent decision, the final outcomes 
may also differ. 

Kahneman and Tversky’s (1979) Prospect theory may have far-reaching implica-
tions in AMD. Once a battle manager has attained an understanding of the current battle 
situation, Prospect theory indicates that changes in the situation are more likely to affect 
his decision than his consideration of the decision outcome. If he perceives that the situa-
tion is changing to favor friendly forces, he may choose a risk-averse decision to mini-
mize risk and maximize certainty; however, if he perceives that the situation is changing 
for the worse, he may decide to make riskier choices. Whether this type of innate human 
behavior is representative of AMD battle managers’ decision-making processes and can 
be mediated through training or an ABMA remains an open question. 

5. Cultural Differences 

Cultural differences may also affect a battle manager’s decision-making behavior. 
In a study funded by the U.S. Air Force Research Laboratory (AFRL) from 2001–2004, 
Micro Analysis and Design, Inc. (MA&D)3 assessed the contribution of cultural factors 
to operator performance in an Integrated Air Defense System (IADS) (Mui et al., 2004). 
The cultural factors that they considered—distribution of power, willingness to take risk, 
and familiarity with the enemy—were derived from an analysis of differences among 
cultures performed by Hofstede (1984) and consequently described by Klein, Pongonis, 
and Klein’s (2000) Cultural Lens model. Although MA&D was able to model a range of 

                                                 
3 MA&D was acquired by Alion Science and Technology in 2006. 
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values for each cultural variable, the ranges for the IADS study were simplified to “high” 
or “low.” 

Mui et al. (2004) studied three scenarios and two countries of interest (Iraq and 
North Korea). The first scenario was a prewar scenario in which two enemy F-16s 
patrolled a nearby border. The second was a traditional wartime scenario in which the 
blue forces were tasked to defend an area from 69 invading aircraft. The third was an 
unconventional scenario incorporating surprise attacks. 

The MA&D study is similar to our planned OITL experiment in that the simulated 
IADS operators were working in the Sector Operations Center, were making critical 
high-level command decisions, and did not have direct control over the early warning 
(EW) radars or weapons. Values for the cultural variables were determined from inter-
views with SMEs. North Korea was assigned a high willingness to take risk, and Iraq was 
assigned a low willingness to take risk. These cultural factors affected the outcome of the 
scenario in relatively predictable ways. For example, a country’s willingness to take risk 
translated into more firings on unknown aircraft. In the first scenario, North Korea was 
much more likely than Iraq to acquire an unknown aircraft with targeting radar to per-
suade the aircraft to retreat. Likewise, assigning a country a low familiarity with the 
enemy translated into less effective and less successful offensive strategies. Although this 
simulation was somewhat contrived, it did show how cultural factors can affect the order, 
time, and locations of firing assignments. It is not in our current plan to consider cultural 
variables in our OITL battle manager study. Instead, individual differences that account 
for performance-related differences across all cultures will be taken into consideration 
(see “individual differences” in Table 1). 

C. HOW AUTOMATION CAN AUGMENT OPERATOR PERFORMANCE 

This section reviews literature related to Question 2: 

Under what circumstances will automation improve operator performance 
and optimize operator workload? 

Automated systems have the potential to increase human performance by carrying 
out certain mundane functions, allowing the human to concentrate on more complex cog-
nitive tasks. For example, the cruise control system on a vehicle alleviates the need for 
the driver to regulate his speed and allows him to concentrate on other vehicles’ motion, 
on street signs, and so forth. Automated systems can also augment human activity by car-
rying out tasks that humans are not physically capable of performing (e.g., weather 
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satellite imaging) or by performing tasks for which humans show inherent limitations 
(e.g., real-time calculation of the distance to a target). 

1. Varying Levels of Automation 

Battle managers’ performance will vary depending on the specific tasks auto-
mated by the ABMA. Not all tasks, however, are good candidates for automation. 
Kaempf, Wolf, and Miller (1993) studied the decision-making processes of an air-to-air 
warfare team in the Combat Information Center of Aegis cruisers. The researchers found 
that the most difficult operator tasks involved assessing the situation and obtaining the 
information needed to maintain good situational awareness (as opposed to deciding 
whether to engage a threat). By the time the operators were ready to make the decision to 
engage, they had already obtained the information they needed. At that point, they just 
followed the instructions set out in the standard operating procedures (SOPs). This work 
indicates that the ABMA will affect operator performance if it assists the operator with 
the most complex decision-making tasks, including assessing the situation. 

Automation can enhance system and human performance at four different stages 
(see Figure 4) (Sheridan & Parasuraman, 2006): 

• The first stage involves the acquisition of information (e.g., from sensors or 
fire units via communication networks). 

• The second stage involves the representation and display of the information 
on the human-machine interface (HMI). Although automation during this 
stage is not necessarily aimed at decision support, it can make a significant 
difference in performance. For example, a study by Smith, Johnston, and 
Paris (2004) showed that Naval officers in an Aegis Combat Information 
Center who viewed information on set of specialized displays were signifi-
cantly less likely to misclassify and target commercial aircraft than the Naval 
officers who used a standard Navy training system. 

• The third stage at which automation can enhance performance is the deci-
sion-making stage. Our planned OITL experiment includes provisions for 
two different experimental baselines. The first baseline represents the current 
system state in which none of the stages are augmented through automation. 
For example, under this baseline, the battle manager must request status 
information from sensor and fire units. The second baseline includes system 
functions that automate the first two stages (information acquisition and dis-
play). Building upon this second baseline, our planned OITL experiment will 
be designed to test three distinct types of automated decision-aiding that 
augment the third stage (decision-making). 
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• The fourth stage is the implementation stage; however, this will not be 
addressed in this study because of the focus on battle management, com-
mand, and control. 

OITL Experiment
Baseline 1

OITL Experiment
Baseline 2

Information
Acquisition

Information
Representation/

Display
Decision-making Implementation

STAGE 1 STAGE 2 STAGE 3 STAGE 4

 

Figure 4. Four stages at which automation can enhance system and human performance  
(adapted from Sheridan & Parasuraman, 2006) 

The planned OITL experiments will focus on identifying the type of automation 
that augments the third stage in Figure 4 (decision-making). The type of automation var-
ies along two dimensions: the specific decision-making task being automated and the 
level at which the system is automating that task. Table 3 shows the eight levels of auto-
mation that have been documented and applied in practice (also see Sheridan, 1992; 
Sheridan & Parasuraman, 2006). Each level can be applied at each of the four stages 
described previously. 

Table 3. Levels of automation  
(from Sheridan & Parasuraman, 2006, p. 94)4 

Level Response 

1 The computer offers no assistance. The humans must do it all. 

2 The computer suggests alternative ways to do the task. 

3 The computer selects one way to do the task and 

4 executes that suggestion if the human approves OR 

5 allows the human a certain amount of time to veto before automatic execution OR 

6 executes the suggestion automatically and then necessarily informs the human OR 

7 executes the suggestion automatically and then informs the human only if asked. 

8 The computer selects the method, executes the task, and ignores the human 

                                                 
4 This table is a condensed version of the full 10-level taxonomy described in Sheridan (1992; Sheridan 

& Verplank, 1978). 
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Level 1 in Table 3 represents our second baseline for the planned OITL experi-
ments. Information regarding the status of sensor and weapon systems and inventories are 
automatically acquired and displayed on the battle manager’s interface. The human 
operator must then perform the tasks of (1) assessing the situation and prioritizing threats, 
(2) pairing weapons to targets, and (3) determining the acceptability of the engagement 
selections. For each of these tasks, the ABMA has the option of suggesting alternative 
ways to do the task (Level 2), selecting one way to do the task but allowing the human 
operator to override this selection (Level 5), or performing the task (Level 8). This results 
in nine possible ABMA configurations, in addition to the two baselines (see Table 4). 

Table 4. Nine possible configurations that consider the  
battle manager’s tasks and the three ABMA levels 

 ABMA Levels 

Battle Manager  
Task 

ABMA suggests 
alternatives  

(Level 2) 

ABMA selects one way 
to do the task, allows 

manual override  
(Level 5) 

ABMA performs  
the task  
(Level 8) 

Assess and priori-
tize threats 

ABMA suggests pos-
sible threat 
prioritizations 

ABMA selects threat 
prioritization, allows 
manual prioritization 
changes 

ABMA prioritizes 
threats automatically 

Pair weapons to 
targets 

ABMA suggests all 
possible weapon-tar-
get pairings 

ABMA selects weapon-
target pairings, allows 
manual pairing changes 

ABMA pairs weapons-
to-targets 
automatically 

Determine the 
acceptability of the 
engagement 
selections 

ABMA suggests 
acceptable engage-
ment selections 

ABMA selects accept-
able engagement, 
allows manual engage-
ment overrides 

ABMA determines 
acceptability of 
engagements and 
performs engagement 

The experimental options listed in Table 4 will allow us to determine which levels 
of ABMA improve the human information processing and decision-making capabilities 
for each of the three battle manager tasks. While our planned OITL experiments appear 
be novel to AMD, similar studies have been executed in other related domains, including 
ballistic missile defense (BMD), Tomahawk strike planning, and air traffic control 
(described in that order in this section). 

In 2005, the Schafer Corporation (Schafer Corporation, 15 January 2005) studied 
the effect of the first two levels of automation in Table 3. They developed an automated 
decision aid in the form of an intelligent agent for the Ground-Based Midcourse Defense 
(GMD) Fire Control (GFC) system. This project was funded on a Phase II Small 
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Decision aids that raise battle man-
agers’ awareness of critical condi-
tions can increase task accuracy 
while decreasing latency. 

Business Innovative Research (SBIR) contract sponsored by the GMD program man-
agement office (GFC Products Division). The Northrop Grumman Corporation, which 
was in the process of developing the GFC, subcontracted to Schafer to develop and test 
the decision aids. During the testing, GFC battle managers were asked to decide whether 
and when to override the automated battle management algorithms. Such decisions 
included engaging a track, ordering a cease fire, and setting the minimum and maximum 
number of intercepts allocated to negate the reentry vehicle (RV) or track cluster. The 
decision aid performed four primary tasks, all of which involved highlighting portions of 
the display to raise the battle manager’s awareness of certain conditions. The highlighting 
was applied to (1) asset values, (2) RV 
likelihood information in cases with 
uncertainties due to sensor tracking, (3) 
RV likelihood information in cases with 
uncertainties due to booster parenting, and (4) clusters of tracks that share the same 
impact region or booster parent as another missile with an override. Schafer Corporation 
conducted an experiment that tested the performance of 15 battle managers, with and 
without the decision aid. The participants included uniformed GFC battle managers and 
civilian SMEs. Their performance was measured by calculating their task accuracy and 
reaction time. In all the conditions, the battle managers completed the tasks faster with 
the decision aid, and, in two of the four conditions, they completed the tasks significantly 
faster. In all the conditions, the battle managers’ accuracy was also significantly better 
with the decision aid. 

Cummings and Bruni (in press) studied the effect of the first three levels of auto-
mation in Table 3 on Naval operators’ decision-making performance in a Tomahawk 
Land Attack Missile (TLAM) planning domain. The study involved the development of 
automated and partially automated decision aids that assist Tomahawk strike planners in 
a multiple resource allocation problem. The planners were asked to assign missiles to 
missions by taking into account factors such as the characteristics of each of the planned 
missions (e.g., target, route, launch basket), the characteristics of the available missiles 
(e.g., type, ship and launch basket required, warhead), each ship’s rate of success for mis-
sile launches, and other constraints such as the number of days to port for each candidate 
ship. 

The first interface Cummings and Bruni (in press) tested (Interface 1) required the 
operators to perform the missile-to-mission matching manually. The interface did filter 
the available information, which prevented the operators from matching missiles to 
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missions in unfeasible combinations. The second interface (Interface 2, shown in Figure 
5) provided some decision-support tools. These tools included tables showing missiles 
that can be matched to missions according to criteria, such as priorities, that the operator 
can enter. It also included an “Automatch” button that automatically matched and priori-
tized missiles to missions in order of mission importance. This version allowed the 
operator to perform “what if” comparisons and save them for future planning. The third 
interface (Interface 3) was a higher level display that did not graphically represent spe-
cific missile-to-mission pairings. It required the user to input his constraints, criteria, and 
priorities using graphical slider bars. The automated system then attempted to optimize 
the resources available to meet the given criteria and produced the best possible missile-
to-mission matches according to an optimization algorithm. 

Twenty U.S. Naval officers tested five combinations of the interface designs: 
Interfaces 1, 2, and 3 separately, Interfaces 1 and 3 together, and Interfaces 2 and 3 
together (Bruni & Cummings, 2007). Operator performance was measured by an objec-
tive weighting function that calculated a weighted sum of the percentages of correct mis-
sile-to-mission matches according to mission priority. Those missions that had higher 
priorities contributed more heavily to an operator’s measure of performance. The results 
showed that Interface 1, the manual matching interface, and the combination of the two 
automated decision-support interfaces (Interfaces 2 and 3 together) generated signifi-
cantly better operator performance than the three other conditions. Interface 1 may have 
produced good results because the operators explained that they were familiar with simi-
lar types of manual missile-to-mission matching interfaces; however, this explanation 
does not indicate why the combination of Interfaces 1 and 3 generated the worst 
performance. 

Cummings and Bruni (in press) also found that “the highest level of automation, 
Automatch, seemed to improve the mission-
missile matching process. According to 
users’ feedback, the Automatch function 
allowed for faster computation of solutions. 
However, it was not always used, and, in many cases, participants exhibited significant 
distrust in the Automatch, by constantly cross-checking the automation’s solution, which 
was expensive in terms of time” (p. 12). 

Automated decision aids will assist 
the human operator as long as he can 
still access the decision-making data. 
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Figure 5. Partial automation support for the Tomahawk missile-to-mission planners  
(Cummings & Bruni, in press) 

The third interface (which required users to manipulate graphical slider bars to 
denote constraints and priorities and automatically performed the matching) induced user 
frustration and mistrust because users “did not have access to the raw data and did not 
know exactly what assignments were made or if a specific missile was available. This 
inability to ‘drill down into the detail’ is a known limitation of configural displays; how-
ever, participants were able to adjust their strategies accordingly and performed as well 
as participants with other interfaces” (Cummings & Bruni, in press, p. 13). Participants 
who used Interfaces 1 and 2 explained that they felt compelled to look at all the available 
drill-down information, even if it was not significant, to ensure that they did not miss any 
critical information. This behavior led to an increase in the solution time (Bruni & 
Cummings, 2007). 

This study and findings demonstrate the utility of automation in assisting the 
human operator and the importance of ensuring that the operator can access the most 
essential data and pairing options—even when the automated system will be recom-
mending or making pairing decisions. 
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The GMD study done by the Schafer Corporation (15 January 2005) and the 
TLAM study done by Bruni and Cummings (2007) demonstrate the value of automated 
decision aids that operate at Levels 2, 3, and 4 in Table 3. These tools suggest alternative 
ways to do the task, recommend a particular way to do the task, and may even execute 
the recommendation if approved by the human operator. The level of automation chosen 
for implementation will affect the overall human-system performance. This issue is 
addressed next. 

In the late 1990s, the National Academy of Sciences (NAS) convened a panel on 
Human Factors in Air Traffic Control to determine what levels of automation are most 
appropriate for which air traffic control tasks (Wickens, Mavor, Parasuraman, & McGee, 
1998). One of the panel’s main findings was that decision aids should not go beyond sug-
gesting preferred alternatives in situations 
that involve a considerable degree of 
uncertainty and risk. The reasons for this 
caution include loss of situational aware-
ness, complacency, and skill degradation and are described later in Section D. Decisions 
about which tasks to automate and to what degree should consider the reliability5—not 
the availability—of the automation (Hawley & Mares, 2006). The panel also recom-
mended that the choice of automation level should be based on an understanding of 
human behavioral strengths, tendencies and vulnerabilities, and the consequences of 
making mistakes. 

All the NAS panel findings are directly applicable to AMD and will be integrated 
into our study. The first stage of the planned OITL study (which will address Question 1) 
is designed to foster an understanding of 
the cognitive and mental capacity of AMD 
operators who have varying levels of 
experience. Then, the performance of each 
group of operators (e.g., novice, intermedi-
ate, expert) will be tested for each battle manager task and ABMA level. Both the reli-
ability of the ABMA and the resulting improvement in performance will be considered in 
assessing the risks and benefits of automating each task. 

                                                 
5 Reliability refers to the decision-making competence of the automation, not to its operational 

consistency. 

Decisions about which tasks to 
automate and to what degree should 
consider the reliability—not the 
availability—of the automation. 

The choice of the automation level 
should be based on an understanding 
of human behavioral strengths, ten-
dencies and vulnerabilities, and the 
consequences of making decisions. 
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2. Augmenting Air and Missile Defense Crew Performance Through Automation 

The benefits of automated systems go beyond enhancing individual human per-
formance, to changing environmental and crew configuration requirements. Although our 
planned OITL experiments will consider the performance of an individual battle manager 
under varying levels of automation, battle managers seldom work alone. They operate as 
part of a crew and have roles such as weapons assignment officers, air defense managers, 
communications officers, and battle manager chiefs. This section addresses considera-
tions in constructing and sustaining crews of operators and automated systems with com-
plementary responsibilities. Many of the findings from these crew performance analyses 
substantiate what we already know about individual battle manager performance. They 
also illuminate the key concepts that will need to be remembered in the future when the 
individual OITL experiments are expanded to crew-based battle management 
experiments. 

Increasing the number of crew members causes an exponential increase in the 
number of ways that variables such as crew members’ behavioral factors, cognitive abili-
ties, and experience can be combined with the candidate system functions and their cor-
responding levels of automation. In these situations, identifying the most appropriate 
combinations of human and system functions to operate in the environment becomes dif-
ficult. An unreasonable number of traditional human-in-the-loop experiments would need 
to be designed, executed, analyzed, and synthesized to account for all possible experi-
mental conditions. Computer-based Human Behavior Representations (HBRs) in con-
structive simulations present an alternative because they do not require human operators. 
HBRs have been used successfully to simulate human behaviors, cognition, and perform-
ance in complex military environments (Morrison, 2003). They can become complex; for 
example, some include models of short-term memory, long-term memory, and emotional 
behavior. HBRs have been used in virtual (i.e., combinations of humans-in-the-loop and 
computer-based agents) simulations to emulate enemy forces or to supplement friendly 
forces. However, the distinct advantage of HBRs is in their application to constructive 
simulations in which human operators are not needed to execute a large number of sce-
narios, to model operators’ reaction and behavior under thousands of combinations of 
conditions, to assess the resulting performance, and to select an optimal set of variables 
and constraints. The missile defense studies described next are based on constructive 
simulations that employ such HBR models. 
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Over the past 10 years, the air defense and missile defense communities have 
exhibited a keen interest in studying the affect of automation on crew performance. In 
1997, the National Missile Defense (NMD) Joint Program Office (JPO), the GMD pro-
ject office, the Army Research Laboratory (ARL), the U.S. Army Space Command 
(ARSPACE), the U.S. Air Force Space Command (AFSPC), Boeing, and TRW initiated 
a major missile defense operator performance modeling effort. The effort began with the 
development of a 181-page Operator Task List (OTL). Two separate efforts then 
attempted to simulate the tasks on this list in the context of realistic scenarios and to vali-
date the simulation. The ARL Human Research and Engineering Directorate (HRED) 
funded an MA&D effort (1997–2003) to assess battle manager workload. This project 
aimed to identify the optimal number of battle managers needed to manage a typical 
BMD battle involving about five ballistic missile threats. In 2001, Boeing tasked TRW to 
run a similar analysis, and, later, the two independent analyses were compared. 

In the 2001 TRW study (September 2001), only the highest level tasks from the 
OTL (e.g., making a cease engagement or weapons-free decision) were considered. 
Crews were modeled as teams of operators who were assigned generic roles and worked 
together to complete the tasks. The model included the time the operators needed to com-
plete each task. These data were obtained in part from ARL and two different Battle 
Planning Exercises (BPEXs): BPEX 99-1 and BPEX 99-3. Operator and crew perform-
ance was measured by calculating their task completion times. Operator stress was mod-
eled by reducing the amount of time required to complete tasks by a fixed percentage 
(e.g., 20% in one case, 50% in another). The requirement to obtain command approval 
for decisions increased the time required to complete decision-making tasks by another 
fixed amount (e.g., 75 seconds). This study considered crews of three, four, and five 
operators and determined that GMD crews perform best when tasks are distributed 
among five battle managers. Factors such as the effort needed to manage crew communi-
cation as the crew size increased were not taken into account. A more recent study by 
Aptima, Inc. (Paley, Levchuk, Clark, Miescher, & Baker, 2004) showed that even when 
crew communication overhead is taken into account, increasing the size of the crew 
decreases the workload of each crew member. If this finding is true, it suggests that a lar-
ger crew size of six, seven, or eight operators might produce even better performance. 

In the longer term MA&D study (Walters & Labay, 2003a, 2003b; Walters & 
Pray, 2003), operators were assigned tasks according to their roles (e.g., battalion direc-
tor, battle analyst, sensors operator, weapons operator, communications operator). Battle 
management crew performance was calculated in terms of the number of total tasks the 
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operators could perform, the time to complete the tasks, the number of tasks that were 
interrupted (and hence dropped), the number that were consequently restarted, and the 
time that operators spent monitoring the situation. This study was an intense effort to 
model in detail about 315 of the tasks in the extensive OTL and their low-level task con-
tingencies. MA&D studied the performance of crews made up of 4, 5, and 6 operators 
during 2002–2003, and the results con-
firmed the findings of the earlier 2001 
TRW study. The MA&D study showed that 
a five-person crew of battle managers com-
pleted a greater number of tasks overall in a shorter time period, dropped fewer tasks 
because of interruption, restarted a greater number of tasks that were dropped, and spent 
more time monitoring the situation and gaining situational awareness. One of the main 
lessons learned was the difficulty in obtaining accurate task times for the tasks in the 
OTL, in particular those inherently cognitive decision-making tasks. 

More recently, the U.S. Air Force Electronic System Command funded an effort 
to determine the optimal operator task loading and crew configuration (e.g., who should 
do what, when, where) to conduct a Battle Management, Command and Control (BMC2) 
mission using the E-10 Multi-Sensor Command and Control Aircraft (MC2A). The 
E-10A MC2A aircraft supports battle management, intelligence, surveillance, reconnais-
sance, and selected information warfare functions (Levchuk, Chopra, Paley, Levchuk, & 
Clark, 2005; Moore, 2004). This study is particularly relevant because of its application 
to battle management for air and cruise missile defense. 

For this effort, Aptima, Inc. (Levchuk et al., 2005; Paley et al., 2004), under con-
tract to the Massachusetts Institute of Technology (MIT) Lincoln Laboratory, developed 
the Team Optimal Design (TOD) model. First, they created a model that described 
33 functions (e.g., process indications and warnings, provide threat updates, determine 
weapon-to-target pairing) that battle managers carry out while operating the MC2A. 
These functions were derived from SME working groups,6 system documentation, and 
mission scenarios from a Virtual Flag training exercise (Paley et al., 2004). Each function 
was decomposed into a task flow diagram that described the sequence of tasks required to 
fulfill the function’s goals. For example, the function “assess active threats” involved 

                                                 
6 The working groups met on six occasions at Langley Air Force Base (AFB). About 12 U.S. Air Force 

active duty and civilian SMEs attended each meeting, and a core compliment of about 5 SMEs 
attended all 6 meetings (personal communication with M. Paley, Aptima, Inc.). 

Decision-making tasks that are 
inherently cognitive contain a large 
amount of variability across battle 
managers. 
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sequences of tasks such as “perform risk assessment for friendly assets” or “identify radar 
track 28.” The 147 tasks in the task flow diagrams were also assigned attributes such as 
duration, workload, and information requirements. A series of 54 mission events were 
then created (e.g., TBM Launch, Red EW Radars Active, Red Strike package ingress). 
These mission events entailed the execution of the already defined functions.7 One repre-
sentative mission required a 25-person MC2A crew to complete 12,246 tasks during a 
6-hour period. 

Tasks with similar characteristics were grouped into representative task classes. 
The TOD model considered these classes of tasks, the resources available, and the char-
acteristics of the battle managers (e.g., competence, experience, memory, and learning) to 
compute the most efficient combination of battle manager roles and responsibilities for a 
given scenario. Although the computation of optimal crew configurations may not be 
relevant to our planned OITL experiment, the task, workload, and accuracy models that 
Aptima, Inc. developed to reach this endpoint can similarly be applied to study the tem-
poral dynamics of battle manager performance and workload. 

The TOD model was designed to compute the workload for a battle manager at 
time t as a function of the classes of all the tasks that the battle manager is performing 
and the residual workload from previous 
tasks (which fades over time). Accuracy 
for a battle manager at time t was calcu-
lated as a function of the battle manager’s 
competence (which is determined by 
learning rate, memory, and training experience) and workload at that time. For situations 
in which workload is low, one can choose to model accuracy as high (when the battle 
manager performs the task automatically) or low (when the battle manager is bored). 

The Aptima E-10A researchers explained that an optimal crew configuration 
might not exist. Distributing all the necessary tasks to some number of crew members so 
that none of the battle managers is overloaded might not be possible. In that case, battle 
managers may end up with overlapping responsibilities, which would increase the need 
to communicate and coordinate. The overhead of this communication and coordination 
then factors back into the calculation of overall workload. One of the most important 

                                                 
7 The assignment of specific functions to scenario events was determined by both active duty and 

civilian SMEs from a number of military and DoD organizations. 

Changes in the degree and type of 
automation changes the crew com-
position requirements, which, in turn, 
changes the crew members’ roles and 
overall performance. 
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lessons learned involved the degree of system automation. Changes in the degree and 
type of automation would change the crew composition requirements. In turn, the results 
of the simulation showed that changing the composition of the crew and the crew mem-
bers’ associated roles had the greatest effect on the overall performance (Paley et al., 
2004). 

D. HOW AUTOMATION CAN HINDER OPERATOR PERFORMANCE 

This section reviews literature related to Question 3: 

Under what circumstances might automation decrease operator perform-
ance and situational awareness while still optimizing operator workload? 

In this section, we review research that suggests that an ABMA may, in some 
cases, decrease operator performance. Although the intent of the ABMA is to decrease 
operator workload, it may increase the overall level of cognitive effort required by the 
operator. In addition to requiring the operator to continue to assess the situation and for-
mulate his own decisions, the automated system would require the operator to evaluate 
the system’s recommendations and compare them to his decisions (Hilburn, 2004; Miller 
& Parasuraman, 2007). These requirements may also lead to additional job preparation 
and training in “managing the automated battle manager” (Hawley, Mares, & 
Giammanco, 2006). 

Automated decision aids can also produce automation bias, a condition in which 
operators learn to rely on the cues presented by the automated system as a replacement 
for their own cognitive effort, human information seeking, and processing (Mosier, 
Stitka, Heers, & Burdick, 1998). While reliance on these automated decision aids can 
improve performance by freeing the operator from attending to mundane tasks and ena-
bling him to concentrate on complex cognitive tasks, overreliance results in accidents, 
especially when the automated system fails (Sheridan & Parasuraman, 2006). 

 Automation Bias, Complacency, and Supervisory Control Effects 

From the late 1970s though the 1980s, industrial engineers, human factors 
researchers, and psychologists were concerned about the way that human information 
processing errors were being blamed for several devastating system failures (e.g., the 
meltdown at Three Mile Island in 1979, the Korean Airlines plane shot down by Soviet 
fighters in 1983, the USAir B-737 crash in 1989). This concern led to an abundance of 
research that showed how operator awareness could be reduced to unsafe levels when the 
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human is removed from the control loop and an automated computer controller is respon-
sible for operating the system (Kaber & Endsley, 1997). For example, Wickens (1992) 
showed that operators respond more slowly to systems that are running in an automated 
mode. Automation can hamper the development and maintenance of skills required 
during normal manual operations and 
increase the time required to train these 
skills. The time available for training must 
be distributed across courses for training 
fundamental skills and courses for training operators how to manage the automated sys-
tem (Hawley et al., 2006). 

Critical operational errors can also result from a misallocation of appropriate 
functions between the automated system and the human operators (Wickens, 1992). In 
situations where finding enough skilled operators is difficult and assigning tasks to an 
automated system may be more cost effective, operators may be reduced to supervisory 
roles. This situation places them out of the control loop and makes them susceptible to 
attention-degradation effects. 

Examples of automation bias effects in AMD operations are not uncommon. 
During Operation Iraqi Freedom (OIF), operators’ overreliance on a fallible automated 
system led to two separate fratricide incidents and the loss of three flight crew members 
(Hawley, 2007). The automated system was the Army’s Patriot missile defense system, 
which had experienced misclassification errors during operational tests before the inci-
dents. The operators’ performance was driven by battle management training on rote 
drills, tactics, techniques, and procedures. Decision-making for cases of track misidenti-
fication or misclassification was not comprehensively covered during this training. In the 
first incident, a British Tornado was misclassified as an antiradiation missile. In the sec-
ond incident, a Navy F/A-18 was misclassified as a tactical ballistic missile (TBM). Both 
targets were engaged and destroyed. 

An abundance of research directed by the Federal Aviation Administration (FAA) 
through the 1980s and 1990s studied the phenomena of automation bias, complacency, 
and other similar issues in air traffic control. For example, Endsley and Rodgers (1996) 
studied the way in which air traffic controllers distributed their attention among aircraft 
while observing 15 different scenarios that contained operational errors. They used the 
Situation Assessment Through Re-creation of Incidents (SATORI) system to simulate the 
data from actual recorded air traffic control situations and synchronized the simulation 

Critical operational errors can result 
from a misallocation of functions 
between the automated system and 
the human operators. 
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with audio tapes of the controller-pilot communication. Occasionally, the researchers 
froze the simulation, blanked out the screen, and asked the controllers a number of ques-
tions. The study showed that the controllers reported only about 67% of the aircraft pre-
sent on the display and did not generally retain detailed aircraft information (e.g., call 
signs, groundspeed, and direction). This low level of situational awareness may be 
explained or intensified by supervisory control effects (described next). 

In Endsley and Rodgers’ study, the air traffic controllers did not interact with the 
simulation. Instead, they passively monitored the system. The activities involved in pas-
sively monitoring an air traffic control simulation may be similar to the monitoring 
activities involved in a highly automated 
environment with an ABMA that provides 
the maximum level of automation. In this 
passive mode, the operator may not achieve 
the same level of attention and situational 
awareness as when he actively monitors 
and controls the system. Thus, while automation may reduce operator workload, it may 
also have the side effect of decreasing operator activity, engagement, and attention. When 
this happens, operator situational awareness and performance may also decrease. If this is 
true, it may explain the relatively low level of situational awareness observed in Endsley 
and Rodgers’ study. 

This effect can be exacerbated in the presence of novice operators who do not 
have the tactical and technical knowledge needed to understand the system decision 
processes. Research by the U.S. Navy suggests that a battle manager’s level of experi-
ence and his tactical and technical expertise are directly related to his ability to maintain 
the situational awareness needed to supervise a fully automated system effectively 
(Hawley & Mares, 2006). For our planned OITL experiments, this research suggests that 
a novice operator’s performance may degrade faster than an expert operator’s perform-
ance under the fully automated ABMA condition (Level 8 in Table 3). 

Kaber and Endsley (1997) conducted a study that examined the specific combina-
tions of human operator and automated system coordination that increase (or decrease) 
overall system performance. It drew upon a taxonomy that described 10 graded levels of 
automation from strict manual control to fully automated (see Table 3 for a condensed 
version). 

While automation may reduce opera-
tor workload, it may also decrease 
operator activity, engagement, and 
attention, which could lead to a 
decrease in situational awareness and 
performance. 
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During the experiment, subjects were asked to eliminate simulated targets that 
were moving toward the center of the screen. In some cases, the human operator per-
formed the functions of monitoring the system status, generating strategies for elimi-
nating targets, selecting a particular strategy, and implementing this strategy. In other 
cases, the system performed various combinations of these functions. Kaber and Endsley 
found that overall performance degraded under the strictly manual control condition and 
all other conditions in which some of the tasks were automated but that the human was 
ultimately tasked with implementing the plan. When the level of automation varied 
across time, subjects had difficulty recovering from situations in which automation 
included advanced queuing of targets. They became accustomed to focusing on future 
tasks and tended to neglect present state incidents. 

This experiment examined combinations of human operator and automated sys-
tem functions and confirmed the importance of establishing the appropriate allocation 
and coordination between these functions. Neither this experiment nor the earlier one 
(Endsley & Rodgers, 1996) studied the dynamics of how air traffic controllers’ attention 
changes as the number of aircraft in the simulation increases or decreases. We expect this 
to be a focal point of the OITL AMD experiment. 

Cummings and Mitchell (2006) studied the workload and performance of 
12 operators as they supervised 4 simulated unmanned aerial vehicles (UAVs) that were 
tasked to destroy a set of time-sensitive targets. (Nine of the 12 participants were active 
duty United States Air Force (USAF) officers or Reserve Officer Training Corps (ROTC) 
students.) The operators were responsible for tasks such as assigning or unassigning tar-
gets to UAV mission plans, arming and firing payloads, and ordering UAVs to return to 
base. Three conditions representing different levels of automated decision support were 
tested: 

• The first level involved a manual decision-aid display containing a series of 
visual timelines showing the scheduling of ATO events associated with each 
UAV (see Figure 6). 

• The second level included an automated decision aid in the form of the visual 
timelines alongside a series of computer-based recommendations that the 
operator could accept or reject. 

• The third level was a fully automated management-by-exception system that 
executed arming and firing actions according to the rules of engagement. 
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Figure 6. Visual timeline decision aid for managing and scheduling the UAV ATO  
(from Cummings & Mitchell, 2006) 

Each condition progressively automated more functions involved in the manage-
ment and scheduling of the ATO. Operators using the fully automated system had an 
opportunity to intervene and veto each action 30 seconds before it occurred. The scenar-
ios were scripted according to two levels of difficulty (high replanning and low replan-
ning) depending on the frequency of replanning that was required in the scenario to 
address emergent threats, new tasking from superiors, and system failures. 

The results of Cummings and Mitchell’s study showed that in the high replanning 
condition, the operators who used the automated timeline decision aid had lower per-
formance scores and higher subjective workload scores than those who used the manual 
timeline and those who used the fully automated management-by-exception system. In 
fact, the automated decision aid produced the poorest scores overall and the lowest situ-
ational awareness (measured by the operators’ subjective assessment of their comprehen-
sion of the current situation). These results suggest that even an arbitrary and 
conservative level of automation does not necessarily improve performance under high-
workload conditions. This study also illustrates the complexity of the interaction among 
the human and automation-related variables that affect the resulting workload and per-
formance of the human-computer partnership. 

One such complex interaction involves the human operator’s perception and trust 
of the system’s recommendations. Skitka, Mosier, and Burdick (1999) point out the 
extensive research in social psychology showing that a person is likely to harm others if 
directed to by an authority figure. To the extent that a person perceives an automated 
decision aid as having authority, there is reason to believe that the person might similarly 
follow the system’s recommendations without further consideration. Stitka et al. (1999) 
tested this hypothesis by asking 80 participants to perform a set of tasks designed to 
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simulate the monitoring and tracking of commercial airlines. In the experimental condi-
tion, the participants had access to an automated monitoring aid that prompted them 
about various system events. In the con-
trol condition, the participants used the 
same system but did not have access to 
the decision aid. The participants were 
specifically told that the automated deci-
sion aid was not always accurate and that the other gauges and instruments (available in 
both conditions) were always 100% accurate. The results of this experiment confirmed 
Stitka et al.’s hypothesis. Not only did the participants in the experimental condition fol-
low the advice of the decision aid when the other instruments provided contradictory evi-
dence, but they were also less vigilant than the control condition, missing a significantly 
larger number of events that occurred without a system prompt. 

E. SUMMARY 

This report summarizes the findings from an array of literature related to how an 
AMD battle manager’s performance degrades with increased workload in the context of 
various realistic scenarios. We also discussed how an ABMA can moderate this degrada-
tion. The reviewed literature was organized according to three research questions: 

1. Without automation assistance, how many decisions can an operator handle 
per unit time? At what point does operator performance drop off, and does it 
drop off gradually or abruptly? 

2. Under what circumstances will automation improve operator performance 
and optimize operator workload? 

3. Under what circumstances might automation decrease operator performance 
and situational awareness while still optimizing operator workload? 

For the first question, without the assistance of automation, a battle manager’s 
performance will degrade as the complexity of the task increases. If human memory 
capacity is limited in the way the psychological and air defense research suggests, we 
should expect the performance of an AMD battle manager to decline rapidly when he 
becomes overloaded with more than seven entities or decisions. The complexity of the 
task can be mediated by several factors, including the fidelity and design of the operator 
display and the level of automation of the system. An operator can improve his perform-
ance by increasing his cognitive capacity, restructuring his knowledge, and gaining 

To the extent that a person perceives an 
automated decision aid as having 
authority, he will follow the system’s 
recommendations even in the face of 
contradictory evidence. 
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experience in the domain. Other factors, such as an operator’s risk-taking and cultural 
behaviors, can also affect his performance. 

For the second question, one of the prominent factors that affects an operator’s 
performance is the level of automation. Section C.1 outlined four different stages and 
eight different levels at which automation can enhance system and human performance. 
One of the studies reviewed (Bruni & Cummings, 2007; Cummings & Bruni, in press) 
demonstrated the utility of automation in assisting the human battle manager and the 
importance of ensuring that he has access to the data needed for decision-making, even 
when the automated system will be recommending or making pairing decisions. At the 
same time, this study indicated that providing an extensive amount of drill-down infor-
mation in a time-sensitive situation would compel the battle manager to review all the 
data, increasing the problem-solving time. Section C.2 explained how changes in the 
degree and type of automation introduced into the system would change the crew compo-
sition requirements. In turn, changing the composition of the crew and the crew mem-
bers’ associated roles affected their overall performance. 

For the third question, an abundance of research indicates that while automation 
may decrease operator workload, it may also, paradoxically, increase the overall level of 
cognitive effort required by the operator. In addition to requiring operators to continue to 
assess the situation and formulate their own decisions, automated systems require opera-
tors to evaluate the system’s recommendations and compare these recommendations with 
their own. This additional cognitive effort in “managing the automated battle manager” is 
also prone to the consequences of automation bias, a situation in which operators learn to 
trust and rely on the cues that are presented by the automated system as a replacement for 
their cognitive effort, human information seeking, and processing. There is no shortage of 
research showing how overreliance on automation results in fatal accidents when the 
automated system fails. 

Some of the studies described in this report have direct implications for the design 
and analyses of our OITL experiments and the design of the battle manager simulation 
interface. Because different battle managers are likely to experience different workloads 
at different times for the same scenario, the OITL experiment participants should include 
battle managers who have a range of abilities (e.g., novice, intermediate, expert) and 
backgrounds. The simulation should alert the battle manager about critical situations, and 
the design of the interface should not impede the battle manager’s ability to access the 
decision-making data. To the extent possible, the simulation environment should 
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encourage a trusting human-system partnership, but it should not induce a false 
perception of trust if the decision-making data are not reliable. The reliability of the 
decision-making data should be apparent to the battle manager and should play a major 
role in assessing the most appropriate level of automation. A battle manager’s 
performance is expected to degrade as the complexity (e.g., the timing, quantity and order 
of events, and degree of uncertainty) of the task increases. As the battle manager’s 
performance degrades, the most appropriate level of automation should be based on an 
understanding of human behavioral strengths, tendencies, and vulnerabilities and on the 
consequences of making mistakes. If automation decreases operator activity, engage-
ment, and attention and leads to a decrease in situational awareness and performance, 
battle manager performance should decrease at the highest ABMA level. The OITL 
experiments should be designed to test these hypotheses, and the selected analysis 
methods should address these considerations. 
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